假如用贝叶斯定理解读狼来了

伊索寓言《狼来了》讲述了这样一个故事:在一个村子里,有一位放羊的少年。他为了打发无聊,向村民们撒谎喊道“狼来了!”。村民们听到后,纷纷拿着武器出来准备驱赶狼,少年却说这只是恶作剧,然后自己大笑着回家了。少年这样撒谎了好几次,村民们每次都被骗。有一天,当狼真的出现在少年面前时,他又大喊“狼来了!”。但是村民们互相提醒道“再也别上当了”,因此都没有去帮助他。少年因此失去了所有的羊。这是一个告诫人们不要撒谎的故事。但是,如果真的遇到喊”狼来了“的少年,大家到底要不要相信他呢?让我们使用贝叶斯定理来分析一下这个故事。我们先假设村民们最开始是非常信任少年的。此时,少年撒谎的概率设为0.1,说真话的概率设为0.9(先验概率)。在少年说真话的情况下,我们再假设,在听到少年喊“狼来了”之后,狼真的被发现的概率为0.8。剩下0.2的概率是狼来了后又逃跑了,没有被村民们看见的情况。另一方面,在少年撒谎的情况下,我们假设发现狼的概率为0.3。即在少年撒谎时,狼没有被村民看见的概率为0.7。有一天,少年大喊“狼来了”。但是村民们并没有发现狼。造成这个结果的原因有两种。一是少年说的是真话,但是狼逃跑了;二是少年在撒谎,而且狼实际上并没有出现。这时,用贝叶斯定理去计算少年撒谎的概率(后验概率),得到的结果为0.28。也就是说,少年撒谎的概率从最开始10%的先验概率,上升到了28%。因为没有发现狼,村民们前往救援,却扑了一场空。对于村民们来说,少年撒谎的概率由最开始的10%上升到了28%。那么,这样的扑空(去救援却没有发现狼)如果重复第2次、第3次,少年撒谎的概率又会如何变化呢?经过5次扑空后,村民们会确信“少年在撒谎”下图显示了少年撒谎的概率变化。最开始只有10%的概率,经过第1次扑空后变为28%,第2次扑空后上升到57.6%,第3次后变为82.7%,第4次后变为94.3%,第5次后会上升到98.3%。到了这个阶段,村民们几乎已经确信“少年在撒谎”了。如果再听到少年喊“狼来了”,估计就不会再去援助了。像这样,在某件事反复发生时,其后验概率会不断地被更新(update)。这被称为“贝叶斯更新”。即使最初的先验概率缺乏客观性,通过贝叶斯更新不停地迭代,得到的后验概率的可信度会逐渐升高。在第6次,如果狼真的来了会怎么样?假设前面5次村民们都扑了空,在第6次听到“狼来了”时,狼真的来了。这时,少年撒谎的后验概率由98.3%下降到95.6%。如果第7次狼又真的来了,少年撒谎的后验概率虽然下降到89.1%,但仍然是很高的数值。在少年撒谎的概率逐渐升高后,就算狼真的出现一两次,村民们认为少年说真话的概率也不会马上升到很高。美国政治学家阿尔伯特·沃尔斯泰特(AlbertWohlstetter,~)把听到反复警告后反应变得迟钝的倾向称为“狼来了综合征”,并把它作为二战时美军没能成功预测日军突袭珍珠港的原因。本文摘编自《科学世界》年第6期《贝叶斯统计》,阅读全文可进入“科学世界微店”购买本期杂志。新媒体编辑

张丽君审核

周辉转载内容仅代表作者观点不代表中科院物理所立场如需转载请联系原


转载请注明:http://www.aierlanlan.com/rzdk/6555.html